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a b s t r a c t

This paper deals with a reliability optimization problem for a series system with multiple-choice and
budget constraints. The objective is to choose one technology for each subsystem in order to maximize
the reliability of the whole system subject to the available budget. This problem is NP-hard and could
be formulated as a binary integer programming problem with a nonlinear objective function. In this
paper, an efficient ant colony optimization (ACO) approach is developed for the problem. In the approach,
a solution is generated by an ant based on both pheromone trails modified by previous ants and heuristic
information considered as a fuzzy set. Constructed solutions are not guaranteed to be feasible; conse-
quently, applying an appropriate procedure, an infeasible solution is replaced by a feasible one. Then, fea-
sible solutions are improved by a local search. The proposed approach is compared with the existing
metaheuristic available in the literature. Computational results demonstrate that the approach serves
to be a better performance for large problems.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Reliability is a significant design measure in many industrial
environments such as telecommunication systems and manufac-
turing facilities. The design of such hardware systems, called reli-
ability optimization problem, can usually be based on either
maximizing reliability, availability and performance, or minimiz-
ing cost. Reliability optimization of a series system has always
been a critical matter. Subsystems of a series system are function-
ally organized such that any failure of each subsystem will cause
the failure of the whole system. One of the strategies for increasing
the system reliability of these sorts of systems is to use extra units
in each subsystem in parallel. In this problem, reliability optimiza-
tion is concerned with determining the optimal number of redun-
dant units for one component employed in each subsystem. Many
algorithms have been developed over the years to solve redun-
dancy allocation problem (e.g. see Chen, 2006; Coit & Smith,
1996; Hsieh, 2003; Ramirez-Marquez & Coit, 2004; Ruan & Sun,
2006; Sung & Lee, 1994; Tavakkoli-Moghaddam et al., 2008; Yeh,
2009; You & Chen, 2005; Zhao & Liu, 2004; Zhao et al., 2007) and
in some cases, reliability optimization is concerned with the design
of k-out-of-n systems (e.g. see Tan, 2003; Yeh, 2004, 2006). As it is
often desired to consider the practical design issue of handling a
ll rights reserved.
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variety of different component types, this paper deals with a reli-
ability optimization problem with multiple-choice constraints
which has not received enough attention.

We consider a series system such that the reliability of the
whole system should be maximized subject to multiple-choice
and budget constraints. For each subsystem, a range of technolo-
gies is available among which only one must be chosen. If there
is no constraint in the budget, then the most reliable technologies
would be the most favorable. But, the available budget usually is
limited and as the more reliable, the more expensive, a strategy
is required to identify the optimal combination of technologies.
This problem is called the reliability optimization of a series sys-
tem with multiple-choice and budget constraints. The problem is
formulated as a binary integer programming problem with a non-
linear objective function (Ait-Kadi & Nourelfath, 2001; Sung & Cho,
2000), which is equivalent to a knapsack problem with multiple-
choice constraints, so that it belongs to the NP-hard class of prob-
lems (Garey & Johnson, 1979). Some exact algorithms have been
developed to solve such knapsack problems with multiple-choice
constraints (Nauss, 1978; Sinha & Zoltners, 1979) or the reliability
problem (Sung & Cho, 2000) which are not efficient for large indus-
trial problems because they require a very large amount of compu-
tation time to obtain the optimal solution. Therefore, the use of
heuristics or metaheuristics is appeared to be necessary to attain
optimal or nearly optimal solutions in a little time. Nourelfath
and Nahas (2003) have proposed a heuristic approach based on
the Hopfield model of neural networks. The approach applies a
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new model of Hopfield networks, where neurons take quantized
values rather than just binary or continuous values. This heuristic
is quickly able to obtain optimal or nearly optimal solutions of
small problems. The first modern metaheuristic (and the only
one based on our knowledge) has been proposed by Nahas and
Nourelfath (2005) to solve the problem. In this algorithm, which
is an ant system, called AS, a penalty treated in the pheromone
trails update is employed for infeasible solutions concerning to
the budget constraint. The penalties are proportional to the
amount of budget violations. Also, a local search is applied to im-
prove constructed solutions. The AS approach is quickly able to ob-
tain optimal or nearly optimal solutions of large problems.

In this paper, we develop an efficient ant colony system, called
ACS, for the problem. Ant colony optimization (ACO) (Dorigo, 1992;
Dorigo et al., 1996; Dorigo & Stutzle, 2003) is a metaheuristic
developed for solving discrete optimization problems. An ACO
algorithm is a population-based approach based on the behavior
of real ant colonies using pheromones as a communication med-
ium. Real ants are capable of finding the shortest path from their
nest to a food source without using visual cues. In the ACS ap-
proach, a solution is generated by applying a pseudo-stochastic
rule based on a combination of the previous solutions results and
the knowledge related to the problem as two fuzzy sets. The unfea-
sibility of constructed solutions is removed by replacing an infea-
sible solution by a feasible one based on a neighborhood search
procedure. Each solution is then improved by an interesting local
search. A set of large problems is used for evaluating the proposed
approach.

The remainder of the paper is organized as follows. The next
section gives the problem statement as a binary integer program-
ming problem with a nonlinear objective function. The proposed
ant colony approach is described in Section 3. Section 4 provides
computational experiments and finally, concluding remarks are gi-
ven in Section 5.
2. Problem formulation

Consider a series system that includes S different subsystems.
For subsystem i, there exist Ni available technologies with different
characteristics such as cost and reliability. Let Cij and Rij be, respec-
tively, the cost and reliability of subsystem i when technology j is
used. Total available amount of budget is B. The optimization prob-
lem is to choose only one technology for each subsystem to maxi-
mize reliability of the whole system (Rsys) subject to the available
budget. In order to formulate the problem in mathematical expres-
sion, decision variable xij is addressed as follows:

xij ¼
1; if subsystem i uses technology j

0;otherwise

�

Then, the problem is formulated as the following binary integer
programming problem with one nonlinear objective function:

Max Rsys ¼
YS

i¼1

XNi

j¼1

xijRij

 !

s:t:
XS

i¼1

XNi

j¼1

xijCij 6 B ð1Þ

XNi

j¼1

xij ¼ 1; 8 i ¼ 1;2; . . . ; S ð2Þ

xij ¼ f0;1g; 8 i ¼ 1;2; . . . ; S; j ¼ 1;2; . . . ;Ni ð3Þ

Constraint (1) represents the budget constraint, constraint (2)
represents the multiple-choice constraint and constraint (3) de-
fines the decision variables.
3. Proposed ant colony approach

In this paper, an ant colony system (Dorigo & Gambardella,
1997a, 1997b) based approach is developed for solving the reliabil-
ity problem under consideration. To apply an ACO metaheuristic to a
combinatorial optimization problem, it is appropriate to represent
the problem by a graph G ¼ ðN; EÞ, where N and E are, respectively,
the nodes and edges. To represent the problem as such a graph,
two types of nodes are introduced: the set of nodes N1 containing
one element for each subsystem and the set of nodes N2 containing
one element for each technology. Furthermore, the edges E connect
subsystems to their available technologies, that is, each node in N1 is
connected to each of the corresponding nodes in N2 by an edge. In the
proposed approach, an ant starts from the first subsystem and
chooses (moves to) one of the available technologies for this subsys-
tem. Then, the ant iteratively moves to the next subsystem and
chooses a technology. At each step, a technology is chosen by apply-
ing a transition rule so-called pseudo-random proportional rule.
Note that the generated solution may be infeasible; because con-
straints (2) and (3) are guaranteed during the construction process,
but the total cost of the chosen technologies may be greater than B.

3.1. General structure of the approach

The general structure of the approach can be represented as fol-
lows (the next sections provide the details).

Algorithm 1
Step 1. The pheromone trails and the parameters are set.
Step 2. The following procedures are iterated Max_iter (an

integer parameter) times:
Step 2.1. The following actions are iterated Ant_size (an
integer parameter) times:

A. A solution is constructed by repeatedly applying the
transition rule.

B. If the solution is infeasible, it is replaced by a feasible
one using Algorithm 2.

C. If it is possible, the solution is improved by Algorithm 3,
i.e., the local search procedure.

D. The pheromone trails related to the chosen
technologies are finally modified according to the local
updating rule.
Step 2.2. The pheromone trails are modified according to
the global updating rule.

Step 3. The best solution found is printed.
3.2. Pseudo-random transition rule

Artificial ants probabilistically build solutions by iteratively
choosing technologies by taking into account both the heuristic
information on the problem and the (artificial) pheromone trails
which change dynamically at run-time. An ant chooses one of
the available technologies to assign to the current subsystem as
follows: with probability q0 an ant k for subsystem i selects the
technology j for which the product between the pheromone trail
and the heuristic information is maximum, that is,

j ¼ arg max½sijðgijÞ
b� ð4Þ

where sij and gij are, respectively, the pheromone trail and heuristic
information between subsystem i and technology j – denoted by
edge (i, j). Also, b is a positive parameter denoting the relative
importance of the heuristic information versus the pheromone trail.
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While with probability 1 � q0, the ant selects a technology j accord-
ing to the probability distribution given in the following equation:

pk
ij ¼

sijðgijÞ
bPNi

l¼1silðgilÞ
b

ð5Þ

As seen, gij shows the desirability of selecting technology j for
subsystem i. Therefore, the heuristic information related to one
subsystem can be considered as a fuzzy set. We present two prior-
ity rules in order to calculate the heuristic information as follows.

Rule 1: (based on the objective function) If a technology is reli-
able, it must be chosen with a high desirability.
Rule 2: (based on the budget constraint) If a technology is
cheap, it must be chosen with a high desirability.

Let Fð1Þij and Fð2Þij be, respectively, the priority grade, i.e., the grade
of membership, of technology j for choosing in subsystem i related
to the sets of reliable (say fuzzy set 1) and cheap (say fuzzy set 2)
technologies for this subsystem. According to Rules 1 and 2 and
based on both Fð1Þij and Fð2Þij , the heuristic information can be calcu-
lated in several ways. In this research, four operators are consid-
ered as the aggregation operator:

O1Þgij ¼ Fð1Þij Fð2Þij

O2Þgij ¼ Average Fð1Þij ; F
ð2Þ
ij

� �
O3Þgij ¼Min Fð1Þij ; F

ð2Þ
ij

� �
O4Þgij ¼Max Fð1Þij ; F

ð2Þ
ij

� �
ð6Þ

Moreover, Fð1Þij and Fð2Þij can be calculated in several manners. In
this research, three methods are defined as follows.

In method 1, the relative values of the reliability and the cost of
a technology are considered according to the given fuzzy sets as
follows:

Fð1Þij ¼
RijPNi
l¼1Ril

; Fð2Þij ¼
1=CijPNi
l¼11=Cil

ð7Þ

While in methods 2 and 3, the reliability and the cost of a tech-
nology are indirectly considered. Assume that, based on fuzzy set
1, the available technologies for subsystem i are sequenced in
decreasing order of reliability. Let rank1

ij be the rank of technology
j which can be between 1 (related to the most reliable technology)
and Ni (related to the most unreliable technology). Also, suppose
that, based on fuzzy set 2, these technologies are rearranged in
increasing order of cost. Let rank2

ij be the rank of technology j which
can be between 1 (related to the cheapest technology) and Ni (re-
lated to the most expensive technology). Then, according to meth-
ods 2 and 3, Fð1Þij and Fð2Þij are, respectively, formulated as (8) and (9).

Fð1Þij ¼
Ni þ 1� rank1

ij

Ni
; Fð2Þij ¼

Ni þ 1� rank2
ij

Ni
ð8Þ

Fð1Þij ¼
1

rank1
ij

; Fð2Þij ¼
1

rank2
ij

ð9Þ

Note that all of the three methods guarantee that the higher
reliability, the greater Fð1Þij and the smallest cost, the greater Fð2Þij

which, respectively, agree with fuzzy sets 1 and 2. In addition,
Fð1Þij and Fð2Þij in (7) are greater than 0 and smaller than 1, while in
both (8) and (9) are limited to the interval ½1=Ni; 1�.

3.3. Dealing with infeasibility

As mentioned before, a constructed solution may be infeasible
because the total cost of the chosen technologies may be greater
than B (that is, the violation of constraint (1)). Thus, we develop
a convenient procedure where an infeasible solution is replaced
by a feasible one. This mechanism is based on a neighborhood
search as follows. (Let TC be the total cost of the current solution.)

Algorithm 2

Step 1. One of the subsystems is chosen; if it is possible, the cur-
rent technology of this subsystem is replaced as follows: among
the available technologies which have smaller cost than the
current one, (if the given set is not empty) the most reliable
technology is selected.
Step 2. TC is calculated. If TC is not greater than B, the procedure
is terminated, and otherwise, it is repeated from Step 1.

In Step 1, a subsystem can be chosen in a random way or in a
purposeful manner based on cost (that is, the subsystem with
the greatest cost).
3.4. Local search

When an ant colony algorithm is coupled with a local search
procedure, the performance could be greatly improved (Dorigo &
Stutzle, 2003). A local search is performed based on a neighbor-
hood search in order to find a better solution. Therefore, if the en-
tire available budget is used by a solution, it may not be improved
by a local search which is not very deep. It is noteworthy that if a
technology is more reliable than another, it also has greater cost,
and otherwise, the last one will not be chosen in the optimal solu-
tion of the problem and hence, it should be eliminated from the list
of available technologies in the beginning – this proposition has
been proved in Sung and Cho (2000). In order to achieve the best
performance, the following local search procedure is developed
to improve each solution which has not used the entire available
budget.

Algorithm 3

Step 1. One of the subsystems is chosen (say i); if it is possible,
the current technology of subsystem i (let us say technology j) is
replaced as follows: among the available technologies which
have higher reliability than technology j and which
Ci. � Cij 6 B � TC, (if the given set is not empty) the most reliable
technology is selected.
Step 2. TC is calculated. If TC is smaller than B, the procedure is
continued from the next step, and otherwise, i.e., if TC = B, it is
terminated.
Step 3. One of the subsystems is chosen (say i). The available
technologies which have higher reliability than the current
one (say technology j) and which Ci � Cij 6 B � TC are specified.
If this set is empty, the procedure is terminated, and otherwise,
technology j is replaced by the most reliable one among the
specified technologies.
Step 4. TC is calculated. If TC is smaller than B, the procedure is
continued from Step 1, and otherwise, i.e., if TC = B, it is
terminated.

In Steps 1 and 3, a subsystem can be selected in a random way
or in a purposeful manner based on reliability (that is, the subsys-
tem with the lowest reliability).
3.5. Local updating of the pheromone trails

While constructing a solution, an ant changes the pheromone
intensity on each edge (i, j) related to its chosen technologies by
applying the local updating rule as follows:



Table 1
Data for example 5.

Subsystem Tech 1 Tech 2 Tech 3 Tech 4 Tech 5 Tech 6 Tech 7 Tech 8

1 Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999
Cost ($) 20 40 60 80 100 120 140 180

2 Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – –
Cost ($) 30 60 90 120 150

3 Reliability 0.8 0.96 0.99 0.998 0.9997 0.9999 0.99999 0.999999
Cost ($) 20 40 60 80 100 120 140 160

4 Reliability 0.75 0.938 0.98 0.999 0.9999 – – –
Cost ($) 30 40 50 60 70

5 Reliability 0.85 0.99 0.999 0.9999 0.99998 0.999998 0.9999998 0.99999998
Cost ($) 20 40 65 80 100 120 140 155

6 Reliability 0.9 0.95 0.999 0.9999 0.99999 – – –
Cost ($) 25 30 50 70 90

7 Reliability 0.95 0.99 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997
Cost ($) 40 60 80 100 120 140 160 180

8 Reliability 0.85 0.995 0.999 0.9999 0.99999 – – –
Cost ($) 10 30 60 80 120

9 Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995
Cost ($) 30 50 70 90 110 130 150 170

10 Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 – –
Cost ($) 15 40 70 100 130 160

11 Reliability 0.95 0.999 0.9998 0.99999 0.999998 0.9999999 0.99999997 0.999999999
Cost ($) 20 40 60 80 100 120 140 160

12 Reliability 0.8 0.9 0.99 0.999 0.9999 – – –
Cost ($) 40 60 85 110 130

13 Reliability 0.75 0.85 0.99 0.999 0.9996 0.99996 0.999996 0.9999996
Cost ($) 30 50 80 100 120 140 160 180

14 Reliability 0.8 0.95 0.99 0.999 0.9999 – – –
Cost ($) 10 30 40 60 80

15 Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999998 0.999999995
Cost ($) 50 80 110 140 160 180 200 220

16 Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999
Cost ($) 20 40 60 80 100 120 140 180

17 Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – –
Cost ($) 30 60 90 120 150

18 Reliability 0.8 0.96 0.99 0.998 0.9997 0.9999 0.99999 0.999999
Cost ($) 20 40 60 80 100 120 140 160

19 Reliability 0.75 0.938 0.98 0.999 0.9999 – – –
Cost ($) 30 40 50 60 70

20 Reliability 0.85 0.99 0.999 0.9999 0.99998 0.999998 0.9999998 0.99999998
Cost ($) 20 40 65 80 100 120 140 155

21 Reliability 0.9 0.95 0.999 0.9999 0.99999 – – –
Cost ($) 25 30 50 70 90

22 Reliability 0.95 0.99 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997
Cost($) 40 60 80 100 120 140 160 180

23 Reliability 0.85 0.995 0.999 0.9999 0.99999 – – –
Cost ($) 10 30 60 80 120

24 Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995
Cost ($) 30 50 70 90 110 130 150 170

25 Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 – –
Cost ($) 15 40 70 100 130 160

26 Reliability 0.95 0.99 0.999 0.9995 0.99999 0.999995 0.9999999 0.99999998
Cost ($) 25 35 55 70 95 115 140 160

27 Reliability 0.85 0.97 0.997 0.9995 0.9999 – – –
Cost ($) 40 60 90 120 145

28 Reliability 0.85 0.96 0.99 0.998 0.9998 0.99995 0.99999 0.999999
Cost ($) 25 45 60 85 100 125 150 170

29 Reliability 0.8 0.9 0.98 0.998 0.9995 – – –
Cost ($) 30 45 60 70 85

30 Reliability 0.8 0.98 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995
Cost ($) 20 40 60 80 100 120 140 160

31 Reliability 0.85 0.9 0.99 0.999 0.9999 – – –
Cost ($) 20 30 50 70 90

32 Reliability 0.9 0.97 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997
Cost($) 30 50 70 90 110 130 150 170

33 Reliability 0.85 0.95 0.995 0.9995 0.99995 – – –
Cost ($) 15 30 60 85 110

34 Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995
Cost ($) 25 45 65 85 105 125 145 165

35 Reliability 0.95 0.999 0.9995 0.99999 0.999995 0.9999999 – –
Cost ($) 20 45 70 100 140 170

36 Reliability 0.99 0.998 0.9998 0.99998 0.999998 0.9999998 0.99999998 0.999999998
Cost ($) 30 40 60 80 100 120 140 160

37 Reliability 0.8 0.9 0.99 0.999 0.9999 – – –
Cost ($) 30 50 80 115 130

(continued on next page)
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Table 1 (continued)

Subsystem Tech 1 Tech 2 Tech 3 Tech 4 Tech 5 Tech 6 Tech 7 Tech 8

38 Reliability 0.75 0.85 0.95 0.996 0.9996 0.99996 0.999996 0.9999996
Cost ($) 20 40 75 100 115 140 155 175

39 Reliability 0.75 0.9 0.99 0.999 0.9995 – – –
Cost($) 15 30 40 60 80

40 Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999998 0.999999995
Cost ($) 40 70 100 130 160 185 210 225

Tech = Technology.

Table 2
Results for example 1.

Case Time Reliability

Minimum Average Std. dev. Maximum

1 1.53 0.850098 0.855895 0.002072 0.857054
2 1.31 0.857054 0.857054 0 0.857054
3 1.29 0.850098 0.855963 0.002100 0.857054
4 1.3 0.856108 0.856659 0.000427 0.857054
5 3.75 0.856108 0.856959 0.000299 0.857054
6 4.14 0.857054 0.857054 0 0.857054
7 2.69 0.856108 0.856770 0.000457 0.857054
8 4.21 0.857054 0.857054 0 0.857054

Table 3
Results for example 2.

Case Time Reliability

Minimum Average Std. dev. Maximum

1 2.01 0.915042 0.915042 0 0.915042
2 1.71 0.915042 0.915042 0 0.915042
3 1.7 0.915042 0.915042 0 0.915042
4 1.7 0.915042 0.915042 0 0.915042
5 2.33 0.915042 0.915042 0 0.915042
6 2.44 0.915042 0.915042 0 0.915042
7 2.72 0.915042 0.915042 0 0.915042
8 2.01 0.915042 0.915042 0 0.915042
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sij ¼ ð1� q0Þsij þ q0s0 ð10Þ

where s0 is the initial value of the pheromone trails and q0, a param-
eter between 0 and 1, is the local pheromone trail evaporation rate.
The effect of this updating is to make the desirability of edges
change dynamically in order to explore different paths by the next
ants in the colony. That is, the technologies in one ant’s solution will
be chosen with a lower probability in constructing other ants’
solutions.

3.6. Global updating of the pheromone trails

Once all ants in the colony have constructed their solutions, the
amount of pheromone on each edge (i, j) related to the global-best
solution, that is, the best solution constructed so far, is modified by
applying the global updating rule as follows:

sij ¼ ð1� qÞsij þ qz Rgb=TCgb

� �
ð11Þ

where q, a parameter between 0 and 1, is the global pheromone
trail evaporation rate, z is a positive parameter and Rgb and TCgb

are, respectively, the reliability and total cost of the global-best
solution. The global updating rule is intended to provide a greater
amount of pheromone to better solutions in order to make the
search more directed.

4. Computational results

In order to evaluate the approach developed for the given reli-
ability problem, five large examples are used. Examples 1, 2, 3
and 4 presented in Nahas and Nourelfath (2005) are used for com-
paring ACS with the previous metaheuristic (i.e., AS) and example 5
is considered for an additional evaluation. Example 1 has 15 sub-
systems and 60 decision variables, example 2 has 15 subsystems
and 80 decision variables, example 3 has 15 subsystems and 100
decision variables and example 4 has 25 subsystems and 166 deci-
sion variables (for details see Nahas & Nourelfath, 2005). The data
for example 5 are shown in Table 1. For this example, which has 40
subsystems and 266 decision variables, the available budget is
2700$ and the search space size is larger than 3.039 � 1032.

The proposed algorithms have been coded in Visual C++6.0 and
run on a Pentium 4, 2 GHz PC with 256 MB memory under Win-
dows XP. In order to test the effect of the local search technique,
ACS is considered both without the local search and coupled with
it. Furthermore, as the heuristic information can be calculated
based on (7)–(9), eight cases are studied as follows:

Case 1: Without the local search and without the heuristic
information.
Case 2: Without the local search and with the heuristic informa-
tion based on (6) and (7).
Case 3: Without the local search and with the heuristic informa-
tion based on (6) and (8).
Case 4: Without the local search and with the heuristic informa-
tion based on (6) and (9).
Case 5: With the local search and without the heuristic
information.
Case 6: With the local search and with the heuristic information
based on (6) and (7).
Case 7: With the local search and with the heuristic information
based on (6) and (8).
Case 8: With the local search and with the heuristic information
based on (6) and (9).

Note that in order to test the effect of the heuristic information,
in Cases 1 and 5 the approach is considered without using the heu-
ristic information, while in the other ones it is employed. When the
heuristic information is not used, (4) changes to j ¼ arg max½sij�
and (5) is also modified as follows:
pk
ij ¼

sijPNi
l¼1sil

ð12Þ

In the preliminary experiment, some values have been tested
for the numeric parameters. Four different values of Max_iter
(1000, 1500, 2000 and 3000), five different values of Ant_size (5,
10, 20, 30 and 50), various values of q0 (0.75, 0.8, 0.85, 0.9, 0.95
and 0.97), different values of b (0.01, 0.1, 0.5, 1, 1.5 and 2), a range
of values of q and q0 (0.01, 0.025, 0.05, 0.075, 0.1 and 0.15) and
three different values of z (1, S/2 and S) have been considered.
We set s0 = 10�6. This value should always be chosen so little that
s0 < zðRgb=TCgbÞ. This issue imposes that (11) causes an increase in
the related sij (and then (10) causes a decrease in the related sij; of
course, s0 is a lower bound of the pheromone trails). With different
combinations of the parameter values, each operator in (6) has
been evaluated and the aggregation operator O3, the Min operator,



Table 4
Results for example 3.

Case Time Reliability

Minimum Average Std. dev. Maximum

1 2.57 0.958163 0.963905 0.002086 0.965134
2 2.17 0.964070 0.965028 0.000336 0.965134
3 2.11 0.964070 0.964708 0.000549 0.965134
4 2.15 0.964070 0.964496 0.000549 0.965134
5 5.23 0.964070 0.965028 0.000336 0.965134
6 5.13 0.965134 0.965134 0 0.965134
7 4.05 0.965134 0.965134 0 0.965134
8 4.34 0.964070 0.964815 0.000514 0.965134

Table 5
Results for example 4.

Case Time Reliability

Minimum Average Std. dev. Maximum

1 4.27 0.864660 0.865127 0.000402 0.865439
2 3.62 0.864660 0.865127 0.000402 0.865439
3 3.68 0.855926 0.864176 0.002925 0.865439
4 3.63 0.864660 0.865127 0.000402 0.865439
5 4.73 0.865439 0.865439 0 0.865439
6 3.91 0.865439 0.865439 0 0.865439
7 4.04 0.865439 0.865439 0 0.865439
8 3.79 0.865439 0.865439 0 0.865439

Table 6
Results for example 5.

Case Time Reliability

Minimum Average Std. dev. Maximum

1 6.69 0.910796 0.913103 0.001608 0.914872
2 5.83 0.912396 0.913920 0.001106 0.914895
3 5.82 0.910730 0.913798 0.001793 0.914895
4 5.91 0.910727 0.914063 0.001389 0.914895
5 7.12 0.911551 0.913441 0.001384 0.914895
6 6.15 0.914045 0.914794 0.000263 0.914895
7 5.96 0.912487 0.914553 0.000771 0.914895
8 5.83 0.911639 0.914221 0.001203 0.914895
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has been yielded the best results (while the Max operator has been
the worst). Therefore, (6) is set according to O3. In addition, the
randomly selection of a subsystem in Algorithms 2 and 3 has been
yielded better performance (the purposefully selections have been
yielded an increase in the CPU time without any significant
improvement in the objective function). Then, the best perfor-
mance of ACS has been obtained with Max iter ¼ 2000; Ant
size ¼ 20, q0 = 0.9, b = 1, q = q0 = 0.1 and z = S/2.

To evaluate the given cases, each of the problem instances has
been tested for 10 trials. The summarized results of examples 1–
5 are, respectively, shown in Tables 2–6, which give comparisons
between the eight different cases. The time representing the aver-
age computational time is in seconds. As seen, the performances of
Table 7
Performance comparison.

Example ACS

Minimum Average Std. dev. Maximu

1 0.857054 0.857054 0 0.85705
2 0.915042 0.915042 0 0.91504
3 0.965134 0.965134 0 0.96513
4 0.865439 0.865439 0 0.86543
the cases have been the same in example 2. In view of the objective
function, Case 6 has been superior in all of the examples compared
to the other cases. Furthermore, when the local search has been ap-
plied, the ACS approach has been enhanced in case of the same
heuristic information (Case 5 in comparison with Case 1, Case 6
in comparison with Case 2 and so on). Of curse, using the local
search has often caused an increase in the time, but the CPU times
of the different cases for the same examples have been so close
that could be ignored. Because the sizes of the examples are large
enough to conclude, using the local search is suggested. Moreover,
Case 5 in comparison with Cases 6, 7 and 8 has not been better.
Consequently, the ACS approach coupled with the local search
and with the heuristic information based on (6) and (7) is
recommended.

Finally, Table 7 gives a comparison between the results of ACS
(Case 6) and AS for examples 1–4. The proposed approach has been
the same as AS in examples 1 and 2, but superior in examples 3 and
4. In addition, it is worth to point out that the results of AS have not
been generated using unique parameter values for all of the four
examples (four set of numeric parameters have been used; for de-
tails see (Nahas & Nourelfath, 2005). This implies that what set of
parameter values should be used to solve another example is not
specified. Therefore, the parameters of AS should be set again
and again and this may be a weak point, whereas the numeric
parameters prepared for ACS are unique and because of the variety
of the five examples, it is assumed that they can be employed to
solve any other example. On the whole, ACS has outperformed
AS and has been able to get very good solutions for large problems
at a reasonable CPU time.
5. Conclusions

In this paper, an ant colony approach is presented for reliability
optimization of a series system with multiple-choice and budget
constraints. Each artificial ant constructs a solution by iteratively
applying a pseudo-random transition rule based on both the heu-
ristic information and the pheromone trails. The heuristic informa-
tion is calculated based on an aggregation of two fuzzy sets. The
generated solution may be infeasible; in other words, the total cost
of the chosen technologies may be greater than the available bud-
get. An infeasible solution is replaced by a feasible one using a
neighborhood search procedure which randomly searches and
finds a feasible solution with nearly highest reliability. The solution
is then improved by an efficient local search method. Finally, the
ant changes the pheromone intensity on each edge related to its
chosen technologies using the local updating rule. Once all ants
have built their solutions, the pheromone trails are globally modi-
fied in order to make the search more directed. To evaluate the per-
formance of the developed approach, it has been compared with
the only available algorithm. Our algorithm has effectively been
able to obtain optimal or near optimal solutions for large problems.
Computational experiments are given to show the superiority of
the proposed ant colony approach.
AS

m Minimum Average Std. dev. Maximum

4 0.85705 0.85705 0 0.85705
2 0.91504 0.91504 0 0.91504
4 0.96406 0.96439 0.00050 0.96513
9 0.86465 0.86491 0.00038 0.86543
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